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Abstract
This paper introduces a novel worker selec-
tion algorithm, enhancing annotation quality
and reducing costs in challenging span-based
sequence labeling tasks in Natural Language
Processing (NLP). Unlike previous studies tar-
geting simpler tasks, this study contends with
the complexities of label interdependencies in
sequence labeling tasks. The proposed algo-
rithm utilizes a Combinatorial Multi-Armed
Bandit (CMAB) approach for worker selec-
tion. The challenge of dealing with imbal-
anced and small-scale datasets, which hin-
ders offline simulation of worker selection, is
tackled using an innovative data augmenta-
tion method termed shifting, expanding, and
shrinking (SES). The SES method is designed
specifically for sequence labeling tasks. Rig-
orous testing on CoNLL 2003 NER and Chi-
nese OEI datasets showcased the algorithm’s
efficiency, with an increase in F1 score up to
100.04% of the expert-only baseline, alongside
cost savings up to 65.97%. The paper also en-
compasses a dataset-independent test emulat-
ing annotation evaluation through a Bernoulli
distribution, which still led to an impressive
97.56% F1 score of the expert baseline and
59.88% cost savings. This research addresses
and overcomes numerous obstacles in worker
selection for complex NLP tasks.

1 Introduction

Crowdsourcing is obtaining labeled data from
crowd workers (Howe, 2006). Prior studies have ap-
plied crowdsourcing to collect data for a wide range
of tasks including image labeling, text classifica-
tion, and sequence labeling (Venanzi et al., 2014).
Generally, one can reduce the cost and improve the
efficiency of label collection by hiring crowd work-
ers instead of expensive experts (Nowak and Rüger,
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2010). With these advantages, crowdsourcing has
gained great interest and played an important role
in data collection for deep learning models.

In this paper, we focus on crowdsourcing for
span-based sequence labeling tasks. Sequence la-
beling involves determining a categorical label to
each word in a sentence (Erdogan, 2010). Many
tasks come in the form of span-based sequence la-
beling, including named entity recognition (NER)
and opinion expression identification (OEI) (Col-
lobert et al., 2011). In simple sentence classifica-
tion tasks, labels are assigned independently. While
in sequence labeling tasks, nearby labels have inter-
dependencies and are attached to the context (Ro-
drigues et al., 2014). This makes sequence labeling
tasks more difficult, and annotations from crowd
workers less accurate. Therefore, improving anno-
tation quality becomes an important and challeng-
ing problem.

On span-based sequence labeling tasks, prior
studies Rodrigues et al. (2014); Nguyen et al.
(2017); Simpson and Gurevych (2019) mainly fo-
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cus on annotation aggregation. These methods are
used after data collection. Due to the disparity of
skill levels among crowd workers, it could help to
improve data quality if we can identify and utilize
workers with the highest accuracy during data col-
lection. This approach is known as online worker
selection to which we resort in this paper. In online
worker selection, the platform allocates a limited
budget between a set of workers iteratively to max-
imize the quality of annotations (Chen et al., 2013).
The skill level of the workers is unknown a pri-
ori and observed through annotations, which leads
to a tradeoff between exploring new workers and
exploiting the best workers at the moment.

For a sequence labeling task, previous bandit-
based algorithms (Rangi and Franceschetti, 2018)
cannot be directly applied since label dependen-
cies lead to challenges in annotation evaluation and
aggregation. For annotation evaluation, we utilize
the widely-accepted span-level F1 score (Derczyn-
ski, 2016) to measure the quality of annotations
and it serves as the feedback signal in the worker
selection process. The main challenge of evalua-
tion is how we can accurately calculate F1 without
expert annotations as ground truth. We want to
use as few expensive expert annotations as possible
to cut costs. For annotation aggregation, we use
the simple but effective majority voting method.
The difficulty here is that when annotators give
very different annotations on the same sentence,
of which the aggregation could be noisy and thus
cannot serve as a reliable ground truth for F1 calcu-
lation. We would like to point out that aggregating
crowd annotations is not the goal of this paper, but
a useful way to reduce the usage of experts. Then
we can formulate worker selection as an optimiza-
tion problem that maximizes the overall F1 score
of the produced annotations.

While expert annotations tend to be of high qual-
ity as ground truth, they usually come at a large
cost. Moreover, they are only available on a small
portion of the task sequences. In this paper, we em-
ploy crowd workers for sequence annotations, of
which the aggregation may serve as ground truth.
We aim to replace as many expert ground truth
labels as possible with aggregated crowd ground
truth labels, while the overall F1 score of the pro-
duced dataset remains high. An expert ground truth
is replaced only when the inter-annotator agree-
ment (i.e., Fleiss’ Kappa (Fleiss, 1971)) among
crowd workers is high enough. The intuition is

that the sequence is easy to correctly annotate for
a majority of crowd workers, which hence, does
not require expert evaluation. Our worker selection
algorithm is illustrated in Figure 1. We iteratively
assign tasks to a subset of available workers, evalu-
ate their annotations, and use the scores as a crite-
rion of worker selection in future rounds. Detailed
descriptions are deferred to Section 3.1.

We evaluate our worker selection algorithm on
two datasets (Rodrigues et al., 2014; Zhang et al.,
2022). However, real datasets are imbalanced and
of small scale which may fail our worker selec-
tion algorithm. Firstly, a reasonable number (e.g.,
3) of annotations on each sentence is required
since we aggregate crowd annotations by major-
ity voting (MV). Secondly, online algorithms (e.g,
CMAB) require a relatively large number (e.g.,
thousands) of iterations to converge on a near-
optimal set of workers (Chen et al., 2013). To
address these issues, we design a data augmen-
tation method for span-based sequence labeling
datasets. The main purpose of our augmentation
method is to reflect the possible errors when hu-
man workers give annotations in practice. Thus,
using generated annotations in MV will not lead
to meaningless aggregation results. We propose
three kinds of modifications, shifting, expanding,
and shrinking to the expert annotation on each sen-
tence. For each sentence, we generate all possible
annotations human workers might give. For each
worker, we select one annotation on each sentence
to make sure the average F1 score is very close to
the worker’s F1 score calculated on the real dataset.
Our augmentation method solves the imbalance
and insufficiency problem in real datasets, enabling
offline evaluation of worker selection algorithms.

The main contributions of our paper are summa-
rized as follows:

• To our best knowledge, we present the initial
work of worker selection on span-based se-
quence labeling tasks. This is critical as such
tasks are more challenging and crowd workers
produce less reliable annotations compared
with simple classification tasks.

• Due to label inter-dependencies, simple bi-
nary feedback is not applicable on span-
based sequence labeling tasks. We utilize the
span-level F1 score evaluated by experts and
crowd workers combined as the feedback sig-
nal, which is shown to precisely reflect the



worker accuracy and hence effectively guide
the worker selection process.

• We propose a data augmentation method to
address the imbalance and insufficiency of
real datasets, enabling offline simulation of
worker selection.

• We conduct extensive experiments on the aug-
mented datasets. We use expert-evaluation-
only as the baseline comparison, which is ex-
pected to generate the highest F1 score. On
the Chinese OEI dataset, our method achieves
up to 99.47% F1 score with 47.19% reduction
in the expert cost. On the CoNLL 2003 NER
dataset, our method achieves up to 100.04%
F1 score with 65.97% reduction in the expert
cost.

2 Related Work

Many studies (Rodrigues et al., 2014; Rodrigues
and Pereira, 2018; Nangia et al., 2021) have used
crowdsourcing for its efficiency and scalability.
However, crowdsourcing suffers from the diversity
of crowd workers’ expertise and effort levels that
are hardly measurable to task requesters. Different
approaches to improving the quality of collected
data have been proposed and studied. For span-
based sequence labeling tasks, prior studies mainly
focus on annotation aggregation. Rodrigues et al.
(2014) proposed CRF-MA, a CRF-based model
with an assumption that only one worker is cor-
rect for any label. HMM-crowd from Nguyen
et al. (2017) outperforms CRF-MA, but the effect
of sequential dependencies is not taken into ac-
count. Simpson and Gurevych (2019) uses a fully
Bayesian approach BSC which is proved to be more
effective in handling noise in crowdsourced data.
Aggregation methods are used after the data collec-
tion process completes. But we aim to assure data
quality and reduce cost during collecting. To this
end, we focus on worker selection in our paper.

In online worker selection, we need to balance
between exploring new workers and exploiting ob-
served good workers. This exploration-exploitation
tradeoff is extensively studied in the bandit litera-
ture (Lai and Robbins, 1985). In practice, we usu-
ally employ multiple crowd workers at the same
time to finish the tasks more effectively. The com-
binatorial multi-armed bandit (CMAB) (Chen et al.,
2013) models this circumstance. Biswas et al.
(2015); Rangi and Franceschetti (2018) reformulate

the problem as a bounded knapsack problem (BKP)
and address it with the B-KUBE (Tran-Thanh et al.,
2014) algorithm. Song and Jin (2021) introduce
empirical entropy as the metric in CMAB and mini-
mize the cumulative entropy with upper confidence
bound (UCB) based algorithm. Li et al. (2022) con-
sider the scalability of worker selection on large-
scale crowdsourcing systems. These studies pro-
pose different methods under the CMAB settings,
but on more complex span-based sequence label-
ing tasks there exists no discussion. We present
the study of worker selection with CMAB on span-
based sequence labeling tasks and show that our
work performs well on the quality and efficiency
of data collection.

3 Methodology

3.1 System Overview

Consider an online crowdsourcing system that can
reach out to a group of crowd workers W =
{w1, w2, . . . , wN}. The workers are required to
provide sequential annotations to a set of sentences
S = {s1, s2, . . . , sM}. More specifically, a worker
annotates a sentence by assigning a tag from a finite
possible tag setC (e.g., a set of BIO tags (Ramshaw
and Marcus, 1995)) to each word. An annotation
on sentence si by worker wj is a tag sequence
aij = a1a2 . . . ak . . . al where ak ∈ C and l de-
notes the length of the sentence. We assume that
every sentence is annotated by K different workers
independently. We define a task as the process of
annotating one entire sentence, and hence there are
in total KM tasks. We seek to acquire an anno-
tated dataset in which the average F1 score of aij

is maximized. If we know which workers give the
best annotations a priori, we can simply ask these
workers to finish all the tasks. However, such in-
formation is unavailable in practice, and we aim
to design an algorithm that learns the best workers
throughout the crowdsourcing process.

In the beginning, we let each crowd worker an-
notate one sentence. We also ask the experts(e.g.,
well-trained linguists assumed to give the most pre-
cise annotations) to give one annotation for each
of these sentences. Then we calculate the F1 score
of the annotation with the expert annotations as
ground truth. We use these scores as the initial F1

scores of workers. At each time step t after ini-
tialization (as illustrated in Figure 1), we select a
subset of workersWt ⊂W to do annotation, based
on criteria discussed in Section 3.3. The size of



the subset Wt should be neither too big nor too
small (e.g., 0.3N ). We randomly choose a subset
of sentences St ⊂ S, assign each si ∈ St to K dif-
ferent workers in Wt, and collect their annotations
Ai = {ai1,ai2, . . . ,aiK},∀i ∈ {1, 2, . . . , |St|}.
To evaluate workers’ F1 scores on Ai, one can use
the expert annotations as the ground truth, which,
however, can be very expensive (İren and Bilgen,
2014). To cut down this cost, we reduce the usage
of expert evaluations whenever crowd annotations
are similar enough. We use the Fleiss’ Kappa score
κ to measure this similarity. The κ score (κ ≤ 1) is
a statistical measure of inter-annotator agreement.
A larger value of κ indicates stronger agreement
between the workers. κ score exceeding an em-
pirical threshold indicates that the crowd workers
reach a consensus on si. In that case, we aggregate
Ai with MV and use the aggregated annotation as
the ground truth of sentence si. If the workers do
not reach a consensus, we resort to expert annota-
tions as ground truth. Next, we can calculate the F1

scores of each aij ∈ Ai and update the F1 scores
of the selected workers.

3.2 Problem Formulation
At time t, we obtain K crowd annotations Ai on
each sentence si ∈ St. We denote all annotations
collected on St by At = {A1,A2, . . . ,A|St|}.
To simplify our expression, we use FExp

1 (aij) to
represent the F1 score of aij using expert anno-
tation as ground truth, and FMV

1 (aij) to represent
the F1 score of aij using the MV aggregation of
Ai ∈ At as ground truth. On collected annotation
sets, FExp

1 (Ai) denotes the average F1 score of all
aij ∈ Ai. Similarly, FExp

1 (At) denotes the average
F1 score of all Ai ∈ At. As FExp

1 (At) reflects the
true accuracy of crowd annotations, our objective
is to maximize the average expectation, or equiva-
lently the cumulative expectation of FExp

1 (At) over
time T . We formulate this problem as a CMAB
problem below:

max

T∑
t=1

E[FExp
1 (At)] (1)

s.t. Wt ⊂W, t ∈ {1, 2, . . . , T} (2)

Since we have no information about workers’
average F1 scores, we need to balance exploring
potentially better workers and exploiting the cur-
rent best workers during worker selection. This
tradeoff is extensively discussed in bandit litera-
ture where arms with unknown distributions form

super-arms. The arms are associated with a set of
random variables Xj,t with bounded support on [0,
1]. Variable Xj,t indicates the random outcome of
arm j in time step t. The set of random variables
{Xj,t|t ≥ 1} associated with arm j are indepen-
dent and identically distributed according to certain
unknown distribution Dj with unknown expecta-
tion µ̄j . The platform plays a super-arm at each
time step, and the reward of arms in it is revealed.
These rewards are used as a metric for selecting
the super-arm in future time steps. After enough
time steps, the platform will be able to identify the
best super-arm and keep playing it to maximize the
overall reward. Similar to bandit terminologies, we
call each worker wj ∈ W an arm and the worker
subset Wt ⊂W a super-arm selected at t.

3.3 Worker Selection Algorithm

Specifically, there are three methods to calculate
the reward of worker wj at time step t as follows.

Expert Only This is a benchmark approach
where the F1 score is calculated using only expert
annotations as ground truth. This method provides
intuitively the most accurate F1 scores. The reward
of worker wj is defined as:

µ
Exp
j (t) = FExp

1 (aij(t)) (3)

The expert-only method requires an expert annota-
tion on every sentence, which is costly and usually
not practical.

Majority Voting (MV) To reduce expert annota-
tions, we aggregate Ai for each sentence si, and
use the aggregated annotation via MV as ground
truth, i.e.,

µMV
j (t) = FMV

1 (aij(t)) (4)

Expert+MV When a task is difficult, workers
may give very different annotations on the same
sentence, and one can be uncertain about the voted
(and possibly noisy) ground truth. In this case,
we want to resort to both crowd workers and ex-
perts. The choice is based on the well-known
Fleiss’ Kappa score κ that can quantitatively eval-
uate the agreement of crowd workers. For each
sentence si, if κ(Ai) is greater than a preset em-
pirical threshold value τ , the reward of annotating
workers is FMV

1 (aij(t)). Otherwise, the reward is
FExp

1 (aij(t)). In this way, MV is only used when
the crowd workers can reach an agreement. Thus



Algorithm 1 The worker selection algorithm with
the Expert+MV metric.

1: Let each worker wj ∈ W annotate a random
sentence and initialize variable µ̄j with F1 by
expert evaluation

2: For each worker wj ∈W , initialize Tj ← 1
3: t← |W |
4: while unannotated sentences exist do
5: t← t+ 1
6: Select Wt ⊂ W based on certain crite-

rion (e.g., (6), (7))
7: Split Wt into several disjoint subsets

{Wt1, . . . ,Wti, . . . ,Wtn}, each containing
K workers

8: for all Wti do
9: Let each wj ∈Wti annotate an sentence

si and collect the annotations Ai

10: if κ(Ai) > τ then
11: Update Tj and µ̄j with FMV

1 (aij(t))
12: else
13: Update Ti and µ̄j with FExp

1 (aij(t))
14: end if
15: end for
16: end while

the reward is always calculated based on reliable
ground truth. We summarize the reward of worker
wj as:

µ
Exp+MV
j (t) =

{
FMV

1 (aij(t)), κ(Ai) > τ

FExp
1 (aij(t)), κ(Ai) ≤ τ

(5)

The ε-Greedy, Thompson Sampling, and Com-
binatorial Upper Confidence Bound (CUCB) are
three effective algorithms to solve the CMAB
problem. For each worker wj ∈ W , both algo-
rithms maintain a variable µ̄j(t) as the average
reward (i.e., the average F1 score) of worker wj

at time step t. CUCB additionally maintains a
variable Tj(t) as the total number of sentences
worker wj has annotated till time step t. Details of
the worker selection algorithm with our Exp.+MV
metric are shown in Algorithm 1. As for the selec-
tion criterion mentioned in the algorithm, ε-Greedy
utilize a hyper-parameter ε which refers to the prob-
ability of exploring random workers. Thus 1 − ε
refers to the probability of exploiting the best work-
ers till the current time step. Formally, Wt is se-
lected with a random variable p ∈ [0, 1] as below:

Wt =


random Wt ⊂W, p < ε

argmax
Wt⊂W

∑
wj∈Wt

µ̄j , p ≥ ε (6)

Thompson Sampling samples from gaussian dis-
tributions of workers’ rewards at each time step t,
and select workers which could maximize the total
reward. CUCB handles the tradeoff by adding an
item considering Tj and t to µ̄j like:

Wt = argmax
Wt⊂W

∑
wj∈Wt

(
µ̄j +

√
3 ln t

2Tj

)
(7)

This makes workers with less annotations more
likely to be selected as the algorithm proceeds. We
provide a brief analysis in Appendix B.

3.4 Data Augmentation Method
CMAB-based algorithms require a relatively large
number (e.g., thousands) of iterations to converge
on selecting a near-optimal set of workers. Hence
real datasets can be insufficient on scale. In the best
case, the algorithm always selects the same best
super-arm at every time step t. Therefore, we need
to ensure that these workers have annotations on ev-
ery sentence in the dataset. Generating the missing
annotations for each worker wj is a great challenge
when we expect the generated annotations to re-
flect the factual reliability of wj . In other words,
we expect the average F1 score of each wj ∈W to
remain constant before and after augmenting the
dataset with generated annotations. This is criti-
cal and difficult since real datasets are imbalanced
and of small scale that cannot well support worker
selection algorithms.

As there is no work on generating missing an-
notations, we start with several naive algorithms
such as randomly generating label sequences as
annotations, and mixing expert annotations with
completely incorrect (e.g., empty) annotations. But
these algorithms either cannot produce annotations
with expected F1 scores, or generate confusing an-
notations which make later aggregation meaning-
less. This motivates us to design a data augmenta-
tion method specialized for span-based sequence
labeling datasets. For each sentence si ∈ S, we
modify the annotation span based on the expert
annotation. We use three types of modifications
to generate new annotation spans with different
F1 scores as illustrated in Figure 2. The goal of
these modifications is to simulate varying annota-
tion errors made by human annotators. We provide



Dataset #Sent. #Antr. #Antr. /Sent. #Sent. /Antr. Span Length
Chinese OEI 8047 70 3.2 368 5.05
CoNLL 2003 4580 47 3.6 350 1.51

Table 1: Statistics of datasets. Sent. stands for sentence. Antr. stands for annotator. Numbers of annotators per
sentence, numbers of annotated sentences per annotator, and span lengths are means.
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Figure 2: An example of the three methods to generate annotations. Chinese characters and corresponding English
words with red backgrounds indicate annotation spans.

a case study of human-made annotation errors in
Appendix C to better motivate these modifications.

Shifting We move both the left and the right bor-
der of the annotation span simultaneously in the
same direction by one word per step.

Expanding We set one of the span borders fixed,
and move the other border by one word per step to
increase the length of the annotation span.

Shrinking We set one of the span borders fixed,
and move the other border by one word per step to
decrease the length of the annotation span.

We perform these modifications on a span multi-
ple times, generating new annotation spans, until
(1)the modified span does not overlap with the orig-
inal one, (2)one of the span borders reaches an end
of sentence or another span in the same sentence,
or (3) the span length becomes 0.

For each sentence si ∈ S, si may contain multi-
ple annotation spans. We perform modifications on
each span in si, and find all combinations of spans
to form possible sentence annotations. With these
methods, we can imitate crowd annotations with
different kinds of errors in practice. Next, for each
worker wj ∈ Wti, if wj has no annotation on si
in the original dataset, we select one from all the
expert and generated annotations on si. We first
calculate ϕ̄j as the average F1 score of all annota-
tions by wj on the original dataset, and then follow
the detailed steps described in Algorithm 2 to do
the selection. We aim to keep the overall F1 score
of wj unchanged.

4 Experiments

4.1 Original Datasets

We compare our CMAB-based algorithms to sev-
eral widely adopted baselines on two span-based
sequence labeling datasets.

CoNLL 2003 The CoNLL 2003 English named-
entity recognition dataset (Tjong Kim Sang and
De Meulder, 2003) is a collection of news article
from Reuters Corpus (Lewis et al., 2004). The
dataset contains only expert annotations for four
named entity categories (PER, LOC, ORG, MISC).
Rodrigues et al. (2014) collected crowd annotations
on 400 articles from the original dataset.

Chinese OEI The Chinese OEI dataset (Zhang
et al., 2022) consists of sentences on the topic of
COVID-19 collected from Sina Weibo1, in which
the task is to mark the spans of opinion expressions.
The Chinese OEI dataset contains expert and crowd
labels for two opinion expression categories (POS,
NEG). Detailed statistics are shown in Table 1.

4.2 Data Augmentation Results

We augment both datasets with the method pro-
posed in Section 3.4. Through our method, the
average F1 score of each w ∈ W remains nearly
unchanged before and after augmenting the original
dataset with generated annotations2. Due to space

1https://english.sina.com/weibo/
2The augmentation procedure takes about 2 hours on a

computer with a 2.9 GHz Quad-Core Intel Core i7 CPU.

https://english.sina.com/weibo/
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Figure 3: Cumulative regrets w.r.t time steps of all dif-
ferent worker selection methods.

limitation, we present the comparisons of different
augmentation methods in Table 5 in the appendix,
which shows that our method clearly outperforms
the others.

4.3 Main Results

We test the Exp.+MV method with 4 baselines:
Oracle, Random, Exp., and MV. Oracle always
selects the empirical best super-arm W opt at ev-
ery time step t. Random selects a different set of
workers randomly at every time step t. Exp., MV,
and Exp.+MV are CMAB-based algorithms intro-
duced in Section 3.3. The CMAB-based algorithms
are tested with CUCB and ε-Greedy as the worker
selection criterion respectively.

We first examine the performance of our worker
selection algorithms by the cumulative regret de-
fined as:

R(T ) =

T∑
t=1

 ∑
wj∈W opt

µ̄j −
∑

wk∈Wt

µk(t)

 (8)

The regret reveals to what extent the super-arm
selected by a certain algorithm is worse than the
one selected by the oracle. In the experiment, we
request 10 annotations on each sentence to ensure
that the CMAB-based algorithms can converge. We
set the size of the super-arm to 20, i.e., 20 work-
ers are selected in each time step t. On the Chi-
nese OEI dataset, we set the kappa threshold τ
in Exp.+MV to 0.4, which results in 57.02% re-
duction of expert annotation cost. On the CoNLL
2003 dataset, we set the kappa threshold to 0.65,
resulting in 43.83% reduction of expert annotation
cost. The kappa thresholds are adjusted to different
values so that Exp.+MV would perform the best
respectively on these two datasets.

Figure 3 shows that Random is constantly worse
than all other methods on both datasets. On the
Chinese OEI dataset, Exp.+MV outperforms MV
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Figure 4: F1 scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold τ of the Exp.+MV method on the CoNLL
2003 dataset.

steadily. Exp.+MV produces greater regret com-
pared with Exp., but it is acceptable since we cut
down up to 57.02% expert cost. On the CoNLL
2003 dataset, Exp.+MV even works better than
Exp.. This indicates on simpler tasks like NER,
crowd workers may provide extra intelligence com-
pared with experts. Besides, we find that algo-
rithms work better with the CUCB criterion rather
than ε-Greedy. In short, CUCB (Exp.+MV) out-
performs other baselines with cumulative regret
and expert cost both considered.

Next, we discuss how different kappa threshold
values τ affect the average F1 score of the produced
annotation dataset. We test τ ∈ [0, 1] with a step
of 0.05. In real datasets like CoNLL 2003 and
Chinese OEI, the number of annotations per sen-
tence is often quite small. To better fit the practical
situations, we ask for 4 annotations on each sen-
tence in the following experiments. Other settings
remain unchanged. Since CUCB performs better
than ε-Greedy on both datasets, we display only
the results from CUCB in later experiments.

On the Chinese OEI dataset, as illustrated in
Figure 8, F1 increases sharply with τ ∈ [0, 0.4].
When τ = 0.4, Exp.+MV achieves 99.47% F1

score of Exp., and saves 47.19% of the expert cost.
The F1 score goes up slowly until τ reaches 0.8.
When τ = 0.8, the F1 score of Exp.+MV becomes
exactly the same as the one of Exp., and Exp.+MV
still saves 6.6% of the expert cost.

The results on the CoNLL 2003 dataset are
shown in Figure 4. Similarly, the F1 score of
the produced annotation dataset grows fast as τ ∈
[0, 0.45]. When τ = 0.45, the Exp.+MV method
already produce an annotation dataset with its F1

reaching 99.86% of Exp.. At this point, Exp.+MV
saves 88.57% of the expert cost. When τ = 0.65,
Exp.+MV outperforms Exp. with a 100.04% F1



Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 65.69 83.99 70.00 78.15 72.23 74.96 87.97 80.03 83.82
Random 55.95 66.42 57.50 64.42 55.64 59.40 75.70 62.61 68.54

ε-G (Exp.) 64.94 80.48 68.56 75.24 68.16 71.34 85.85 76.79 81.06
ε-G (MV) 64.44 80.22 67.98 74.69 67.59 70.77 85.67 76.09 80.59
ε-G (Exp.+MV) 64.68 80.94 68.41 75.08 68.37 71.40 85.93 76.62 81.01

TS (Exp.) 64.94 79.88 68.51 75.64 68.31 71.57 85.02 75.71 80.09
TS (MV) 64.47 79.19 67.91 74.97 67.54 70.80 84.14 74.21 78.86
TS (Exp.+MV) 64.20 79.09 67.62 75.27 67.83 71.12 84.77 75.39 79.81

CUCB (Exp.) 65.65 80.34 69.24 75.94 69.12 72.20 86.17 77.22 81.45
CUCB (MV) 65.39 80.00 68.91 75.95 68.90 72.08 86.13 76.67 81.12
CUCB (Exp.+MV) 65.33 81.12 69.11 75.70 69.30 72.21 86.17 77.28 81.48

Table 2: Detailed P, R, and F1 scores of all methods on the CoNLL 2003 dataset.

score and a 65.97% reduction in expert usage.
Previous results show that with our

CUCB (Exp.+MV) worker selection algo-
rithm, we do not need to ask the experts to evaluate
crowd annotations on every sentence. Instead, we
propose to utilize crowd intelligence for annotation
evaluations through our kappa-thresholded MV.
And the dataset produced by our method is of
nearly the same or even higher quality compared
with using only expert evaluations.

All of the F1 scores in the previous experiments
are span-level proportional scores calculated by the
proportion of the overlap referring to the expert
annotation (Zhang et al., 2022). To provide ad-
ditional comparisons between different methods,
we also invoke token-level and span-level exact P,
R, F1 scores as supporting metrics. We run the
whole process from data augmentation to worker
selection with all 3 metrics separately. The kappa
threshold τ in Exp.+MV is set to 0.4 on the Chi-
nese OEI dataset and 0.65 on the CoNLL 2003
dataset. Detailed scores are listed in Table 2 and 6.
The results show that Exp.+MV achieves scores as
good as Exp. and much better than MV, which val-
idates previous experiments and shows our worker
selection methods are robust to different metrics.

We also test our worker selection methods with
a feedback simulator. The simulator generates nu-
merical feedback from Bernoulli distribution in
annotation evaluations. This is to eliminate the
varying level of difficulty in different tasks and eval-
uate our worker selection algorithms under more
stable settings. Our algorithm achieves good results

on the simulator as well. Due to space limitations,
we put the definitions and results in Appendix A.
To further show the effect of our worker selection
algorithm on the performance of machine learn-
ing models, we have run experiments with several
widely-accepted models. These results are shown
and explained in Appendix D.

5 Conclusion

This paper introduces a CMAB-based method for
worker selection in span-based sequence labeling
tasks. Due to label inter-dependencies, the bi-
nary feedback signal in conventional CMAB is
not applicable. We propose to use span-level F1

with Exp.+MV as feedback. To tackle unbalanced
and insufficient real datasets for offline simula-
tion, we develop a data augmentation method for
span-based sequence labeling datasets that reflects
the possible errors in annotating practice. The
F1 scores of generated annotations are nearly the
same as workers’ actual ones. With the augmented
datasets, we conduct extensive experiments. On
the Chinese OEI dataset, our method achieves up to
99.47% F1 score with 47.19% reduction in the ex-
pert cost. On the CoNLL 2003 dataset, our method
achieves up to 100.04% F1 score with 65.97% re-
duction in the expert cost. Both are compared
with expert-evaluation-only baselines. Our method
achieves up to 94.86% F1 score and saves 65.97%
expert cost on the data-free simulator as well.



Limitations

In this paper, we provide theoretical analysis and
offline simulation results of our worker selection
algorithm. These results show that our algorithm
performs well. But due to the budget limitation,
we are unable to apply our algorithm on real online
crowdsourcing systems and test it with real-time
annotation tasks.
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A Feedback Simulator

The performance of crowd workers may fluctuate
on different kinds of annotation tasks. To vali-
date the Exp.+MV worker selection method under
more stable settings, we exclude the datasets in the
worker selection process and directly generate the
numerical feedback when workers give annotations.
Specifically, for each worker w, we precalculate
the average F1 score of all annotations by w on the
original dataset using expert and MV evaluation
respectively, denoted as ϕ̄Exp.

w and ϕ̄MV
w . At time

step t, for each si ∈ St, we assign K tasks to K
different workers in Wt, then use a random value
on [0, 1] as the workers’ agreement κ. If κ > τ ,
we generate feedback for the K workers from
Bernoulli(ϕ̄MV

w ) independently. Otherwise, the
feedback is generated fromBernoulli(ϕ̄Exp.

w ). We
set the kappa threshold value τ to 0.4 in Exp.+MV.
The results of this experiment are shown in Ta-
ble 3. Exp.+MV saves 59.88% of expert usage
under these settings.

B Regret Analysis

We provide a brief regret analysis of the worker
selection framework assuming that we use the ε-
greedy algorithm and that each worker’s reward
follows a Bernoulli distribution.

The main proof follows the proof of Theorem
1 in (Garcelon et al., 2022). The key contribution

Method F1

Oracle 74.12
Random 65.12

Exp. 69.78
MV 66.80

Exp.+MV 68.29

Table 3: The overall span-level proportional F1 scores
of all methods with the feedback simulator.

here is that we need to specify that the evaluation
signal (generated by majority voting) is a general-
ized linear model of workers’ true reward signal
(generated by expert/oracle). To this end, we utilize
the following form of the Chernoff bound which
applies for any random variables with bounded sup-
port.
Lemma 1 (Chernoff Bound (Motwani and Ragha-
van, 1995)) Let X1, X2, · · · , XN be independent
random variables such that xl ≤ Xi ≤ xh for
all i ∈ {1, 2, · · · , N}. Let X =

∑N
i=1Xi and

µ = E(X). Given any δ > 0, we have the follow-
ing result:

P (X ≤ (1− δ)µ) ≤ e−
δ2µ2

N(xh−xl)2 . (9)

For the purpose of our discussion, let Xi ∈ {0, 1}
be a binary random variable, whereXi = 0 denotes
that worker i provides an incorrect solution, and
Xi = 1 denotes that worker i generates a correct
solution. Define X =

∑
i∈N Xi.

We aim to approximate PMV, which is the prob-
ability that the majority of the N workers provide
the correct estimate. We apply the Chernoff Bound
in Lemma 1 to PMV. We can compute

E(X) = p̄ =

∑N
i=1 pi
N

. (10)

Based on (9), we let µ = E(X), δ =
N(p̄− 1

2
)

N
2

+N(p̄− 1
2

)
,

xl = 0, xh = 1, and get the following result:

PMV = P

(
X ≥ N

2

)
= 1− P

(
X ≤ N

2

)
≥ 1− e−

δ2µ2

N (11)

= 1− e−
N2(p̄− 1

2 )2

[N2 +N(p̄− 1
2 )]2

[N2 +N(p̄− 1
2 )]2

N (12)

= 1− e−
N2(p̄− 1

2 )2

N (13)

= 1− e
−N

(∑N
i=1 pi
N

− 1
2

)2

. (14)
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Through approximating PMV by its lower bound
in (14), we can see that the evaluation signal (rep-
resented by PMV) is an increasing function in each
worker’s capability pi and twice-differentiable.
That is, PMV is a generalized linear function, which
satisfies Assumption 3 in (Garcelon et al., 2022).
Therefore, one can follow the proof of Theorem 1
in (Garcelon et al., 2022) that the ε-greedy algo-
rithm yields a sub-linear regret with order Õ(T 2/3).

C Case Study of Annotation Errors

Based on our statistical analysis of the Chinese
OEI dataset, we find that 74.80% of annotations
have different types of errors. We use modifica-
tions (SES) of augmentations to simulate varying
annotation errors made by human annotators. In
this section, we provide a detailed characterization
of human-made errors observed on annotated data
with real cases to better motivate our modifications.

Shifting Some error spans are as long as expert
ones, but of which the positions are wrong. Shifting
simulates this type of error. We can see in Figure 5,
both the expert span and the crowd span are three
words long and of negative polarity. The difference
is that the crowd span is shifted to the left by 2
words compared with the expert span. This type of
error can be generated with Shifting.

如果你感到有些沮丧或失落，你不妨试试运动。

If you feel slightly depressed or lost, you could try sports.
Expert

Crowd 
Worker

如果你感到有些沮丧或失落，你不妨试试运动。

If you feel slightly depressed or lost, you could try sports.

Figure 5: A case in which the crowd worker annotates
a span with correct length and polarity but incorrect po-
sition.

Expanding Expanding is used to generate longer
(than expert span) error spans. It might be intuitive
that annotators barely make errors such as expand-
ing to a very long span. However, in the case shown
in Figure 6, the expert annotates five short spans
separated by commas. While the crowd worker
uses a very long span that covers the whole sen-
tence, which is obviously not accurate. To simulate
such a human-made error, we can expand an expert
span to cover the sentence. Statistically, 4.03% of
annotation errors are very long spans with more
than 15 Chinese characters. So we do not set an
upper bound of span length in Expanding.

良好的⾝体素质是⾼效的保障，是成功的保障，是⾼⽔准
⽣活的保障，是为社会多做贡献的保障，是⽣命的保障！

Good physical fitness is the guarantee of efficiency, of success, of 
a high standard of living, of contributing more to society, of life!

Expert

Crowd 
Worker

良好的⾝体素质是⾼效的保障，是成功的保障，是⾼⽔准
⽣活的保障，是为社会多做贡献的保障，是⽣命的保障！

Good physical fitness is the guarantee of efficiency, of success, of 
a high standard of living, of contributing more to society, of life!

Figure 6: A case in which the crowd worker uses a very
long span that covers the whole sentence.

Shrinking Shrinking is useful since crowd work-
ers often ignore some words when annotating. As
shown in Figure 7, the crowd worker failed to find
all words expressing positive opinions.

我昨天在家⾥过得⾼效⽽又充实。

I had a productive and fruitful day yesterday at home.
Expert

Crowd 
Worker

我昨天在家⾥过得⾼效⽽又充实。

I had a productive and fruitful day yesterday at home.

Figure 7: A case in which the crowd worker does not
annotate all words with polarity.

Sometimes crowd workers ignore a whole span
in expert annotations. This is why we set the lower
bound of span length to zero in Shrinking, which
means we can shrink a span into no span.

These three types of modifications can be com-
bined to simulate more complex annotation errors.

D Machine Learning Model Results

To further show the effect of our worker selection
algorithm on the performance of machine learning
models, we have run experiments and provide the
results in Table 4.

We observe a consistent increment of F1 score
on the machine learning models, with our bandit-
based worker selection algorithm. These results re-
veal that our worker selection algorithm may help
improve the performance of machine learning mod-
els while saving budget on crowdsourcing.



Method F1 w/o Bandit F1 w/ Bandit

LSTM-Crowd-cat (Nguyen et al., 2017) 52.66 54.27
Bert-BiLSTM-CRF (Zhang et al., 2022) 52.14 54.51
Annotator-Adaptor (Zhang et al., 2022) 53.86 56.16

Table 4: Span-level exact F1 scores of widely-accepted deep learning models on the Chinese OEI dataset. We
provide results with and without our bandit-based worker selection algorithm.

Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

Worker
ID

Ori.
F1

Rnd.
Gen.
F1

SES
Only

F1

SES
+Alg.2

F1

25 62.90 60.07 69.59 62.89 37 37.15 96.10 26.79 37.16
32 60.87 41.37 68.79 60.87 13 36.19 31.62 25.14 36.20
42 53.88 4.37 66.57 53.88 20 36.11 71.44 25.02 36.12
5 52.07 50.74 60.76 52.06 64 35.97 65.66 25.39 35.97
55 50.70 30.24 61.13 50.70 63 35.22 75.40 24.73 35.22
2 50.53 91.99 60.92 50.53 6 35.15 65.74 25.00 35.16
52 50.08 41.93 60.91 50.08 10 34.63 51.28 25.08 34.64
17 49.82 43.73 35.82 49.82 66 33.75 60.98 24.99 33.75
57 49.25 13.17 35.59 49.25 53 32.90 27.51 24.78 32.89
11 49.04 53.71 35.19 49.03 4 32.72 8.40 24.77 32.72
26 48.89 5.17 35.59 48.82 21 32.19 73.47 24.78 32.19
36 48.71 15.53 35.27 48.70 62 32.16 48.71 24.89 32.16
46 48.67 44.84 35.19 48.67 1 32.10 34.42 24.96 32.10
29 48.60 95.39 35.21 48.60 41 31.94 77.55 24.88 31.93
35 47.07 23.64 35.34 47.07 51 31.78 68.07 24.85 31.78
49 46.80 60.30 35.27 46.80 31 31.61 29.44 24.59 31.61
54 45.63 18.74 34.45 45.64 8 31.05 28.55 24.76 31.05
14 45.13 60.99 34.54 45.13 67 30.91 95.51 24.22 30.91
43 44.93 34.91 33.72 44.93 58 30.70 21.64 23.96 30.70
7 44.37 23.89 33.50 44.37 65 30.61 4.51 24.17 30.60
59 44.36 72.37 33.61 44.37 38 30.47 4.82 24.11 30.47
23 43.38 4.85 33.58 43.38 28 29.86 2.63 24.00 29.86
56 43.37 41.96 33.31 43.37 45 29.38 36.13 24.15 29.38
0 41.60 66.81 28.19 41.61 30 28.70 61.16 21.88 28.71
18 41.40 31.53 28.56 41.40 15 25.73 38.92 21.40 25.73
16 41.31 57.13 28.03 41.31 19 24.69 4.39 21.31 24.70
22 41.05 85.83 28.21 41.06 44 23.42 7.15 21.08 23.42
47 40.78 82.33 27.91 40.78 9 22.88 96.22 21.22 22.89
61 40.22 12.20 28.44 40.22 33 22.36 29.89 19.50 22.36
40 40.01 84.98 28.38 40.02 39 20.69 57.73 19.26 20.69
50 39.35 56.04 28.64 39.35 69 20.39 63.02 19.26 20.40
27 38.77 34.07 27.87 38.77 3 17.12 28.70 18.66 17.13
48 38.35 23.77 27.57 38.35 24 16.96 42.73 18.68 16.98
34 38.29 5.69 28.08 38.30 68 14.53 13.63 7.69 14.53
12 37.96 85.14 27.44 37.96 60 13.66 22.69 8.15 13.66

Table 5: Comparisons between different data augmentation methods on the span-level exact F1 score of every
crowd worker. Ori. stands for the original score in real datasets before any augmentation. Rnd. Gen. is a
naive augmentation method with random generated annotations. SES Only indicates the shifting, shrinking, and
expanding method we proposed. SES + Alg.2 means SES with Algorithm 2 which is our final method.



Method Token-level Span-level Exact Span-level Prop.

P R F1 P R F1 P R F1

Oracle 62.88 68.62 64.80 54.48 51.97 53.07 72.79 64.07 68.15
Random 58.49 57.30 57.42 43.99 35.50 39.18 69.01 52.36 59.55

ε-G (Exp.) 61.91 64.58 62.61 51.72 46.37 48.76 72.28 60.25 65.72
ε-G (MV) 60.87 63.52 61.55 48.72 44.66 46.37 70.15 58.94 64.05
ε-G (Exp.+MV) 61.76 64.46 62.47 49.14 45.35 46.96 71.21 59.92 65.08

TS (Exp.) 62.66 64.91 63.20 49.76 42.34 45.69 72.15 60.20 65.63
TS (MV) 59.82 61.90 60.25 44.81 40.71 42.36 67.72 56.05 61.34
TS (Exp.+MV) 61.66 64.03 62.23 47.20 42.36 44.49 70.66 59.07 64.35

CUCB (Exp.) 63.02 63.75 62.93 52.24 45.51 48.56 73.05 59.53 65.60
CUCB (MV) 61.94 62.09 61.55 49.57 44.39 46.66 71.22 57.59 63.68
CUCB (Exp.+MV) 62.83 63.62 62.75 51.31 45.60 48.16 72.48 59.33 65.25

Table 6: Detailed P, R, and F1 scores of all methods on the Chinese OEI dataset.

Algorithm 2 The annotation selection algorithm.
1: For each worker wj ∈ W , maintain (1)a vari-

able ϕ̂j as the average F1 score of the selected
annotations by wj so far, (2)a set Aj of se-
lected annotations by wj

2: Generate all possible annotations Ap
1 on s1 ∈

S, calculate FExp
1 (a1k) for each a1k ∈ Ap

1

3: For each w ∈ W , initialize ϕ̂j with the
FExp

1 (a1k) closest to ϕ̄j , and append the a1k to
Aj

4: for all si ∈ S\s1 do
5: Generate all possible annotations Ap

i on
si ∈ S, calculate FExp

1 (aik) for each aik ∈
Ap

i

6: for all wj ∈W do
7: if ϕ̂j > ϕ̄j then
8: Update ϕ̂j with the maximal FExp

1 (aik)
less than ϕ̄j , and append aik to Aj

9: else
10: Update ϕ̂j with the minimal FExp

1 (aik)
greater than ϕ̄j , and append aik to Aj

11: end if
12: end for
13: end for
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Figure 8: F1 scores of the produced annotations and us-
age of expert for annotation evaluations w.r.t the kappa
threshold τ of the Exp.+MV method on the Chinese
OEI dataset.


